观点 | 电厂燃煤锅炉掺烧污泥弊大于利 应该坚决摒弃?
来源: 新欧亚集团 添加时间:2020-07-31 浏览次数: 649
摘要:自江苏常州成功开发电厂燃煤锅炉以掺烧方式处置污水厂污泥以来,国内许多地区都因投资小、占地少、运行成本低廉、排放达标且符合相关产业政策的先进“协同处置”工艺而积极推广。然而,因该工艺稀释排放极其严重,折算后污泥焚烧特征污染物二噁英等严重超标,对环境和人们健康的隐性影响和长期影响十分严重,综合分析得出弊远大于利,应该坚决摒弃。
0 概述
2003 年前后,江苏常州开始实施燃煤电厂锅炉掺烧污水处理厂污泥的工业化应用,并作为“成功经验”和“创新典型”进行推广。近些年国内这种形势更是如火如荼,一些大企业的自备电厂也在酝酿掺烧污泥改造。然而该工艺存在排放有害物质等问题,应引起我们足够的重视,并采取措施妥善解决。
1 电厂掺烧污泥存在的问题
1.1 电厂燃煤锅炉≠污泥焚烧炉
污泥焚烧炉是专门设计的废物焚烧炉,焚烧的是废物(污泥),燃料煤是作为辅助燃料使用。电厂燃煤锅炉的燃料为全煤,相对于废物焚烧炉,是两种完全不同的生产工艺或生产方式。
污泥焚烧炉配套的烟气净化设施是专为控制其特征污染物而设计,如对全球公认的一类致癌物二噁英的减排效果均在 97%~99%水平,对HCl、HF 以及各类重金属(如汞等)亦具有很好的减排效果;而电厂燃煤锅炉配套的烟气净化设施(“除尘”+“脱硫”+“脱硝”)对污泥焚烧特征污染物,如二噁英及汞的去除效果则较差,远不如前者。
燃煤电厂锅炉对煤种、煤质等要求都比较高,同时,对运行过程中的管理要求也较高,尤其是高参数锅炉,“掺烧”不符合“电厂设计规范”及其生产工艺条件要求,不仅降低了锅炉的热效率,而且因为污泥中的氯、氟含量远高于原煤,将加剧锅炉系统及相关设备的腐蚀,不利于锅炉系统的安全运行,同时也不利于粉煤灰的综合利用。
1.2 《火电厂大气污染物排放标准》+《生活垃圾焚烧控制标准》≠“电厂锅炉掺烧污泥”排放标准
现行《 火 电 厂大气污染物排放标准 》 (GB13223-2011)对污泥焚烧排放的特征大气污染物没有相关的控制要求,现行《生活垃圾焚烧控制标准》(GB18485-2014)不适用于燃煤锅炉掺烧污泥特征污染物如二噁英及重金属的控制。
某电厂1 000 MW超超临界机组燃煤锅炉掺烧5%含水率约60%的污泥275 t/d,折合干污泥量为110 tDS/d,新增加的烟气量约占原有烟气量的3.5%,即,焚烧污泥自身产生的烟气量已被稀释了30 倍。若考虑两个排放标准的基准含氧量不同,GB13223 和 GB18485 分别为 6%和为 11%,执行GB18485又将被稀释1.5倍、共被稀释45倍,污泥焚烧特征污染的稀释排放极为明显。
以二噁英为例,根据该电厂掺烧污泥环评文件,其去除率仅为 20.4%,远低于专用焚烧炉配套净化设施的 97%~99%的去除效率。环评文件中的二噁英平均排放浓度为 0.039 ng-TEQ/m³,低 于 GB18485 中的 0.1 ng-TEQ/m³排放标准,表面看是“达标”了,但如果按稀释倍数折算,则应为1.153 ng-TEQ/m³,已超过 GB18485 中指标 的10.53 倍,若按基准含氧量换算将超标15倍以上。
1.3 粉煤灰利用的安全问题应加以考虑
污泥成分比生活垃圾更加复杂,其含有更多的重金属等有毒有害成分,其中的无机有毒有害成分绝大部分都将进入粉煤灰。国内电厂粉煤灰多用于建材(如作为熟料直接配入水泥),其中的重金属等有毒有害成分容易释放出来。因此,对建材的安全利用应有所考虑,如配入这类粉煤灰的水泥在饮用水处理设施、游泳池、各类水库、农业水利设施等建设方面的安全应用等。
1.4 污泥并非“资源”或“可再生资源”更非“生物质资源”
污水处理厂污泥含水率通常在80%左右,大于生活垃圾含水率的2倍,其热值则不及生活垃圾的1/4,且灰分高、灰熔点低。因“生物质资源”有其专业定义,故污泥不能称为“生物质资源”。掺烧的结果将降低锅炉热效率,增加发电煤耗。
仍以上述电厂为例,掺烧含水率为5%,污泥量为 60%,锅炉热效率将降低 0.5%。在总发电量不变情况下,仅因锅炉热效率的降低全年燃料煤的消耗量将增加 1.21 万 t;加上焚烧污泥本身需要的能耗,耗煤量将由掺烧前的 438.67 t/h 增加到掺烧后的 450.87 t/h(增加了2.78%),全年煤耗量将增加6.71万t。即:“掺烧污泥”不是“产能”而是“耗能”,故不能将“掺烧污泥”简单地理解为“资源综合利用”或“可再生资源利用”,更不能称为“循环经济”。
1.5 掺烧污泥的政府成本
据公开资料,污泥单独焚烧减量化处理地方财政补贴为 200 元/t~300 元/t(湿)。对电厂掺烧污泥,另有国家电价补贴、税收优惠(有些地方还有煤价优惠)等,政府总支出成本在400元/t~500元/t,远高于独立的污泥干化焚烧,甚至为其两倍。
对于发电企业,相当一部分直接焚烧未经干化处理、含水率在80%左右的湿污泥,相对于独立的污泥干化焚烧企业建设投资极少、运行成本极低。
即便没有国家电价补贴、税收优惠等,因其建设投资及运营成本远低于独立的污泥干化焚烧,相对而言,其利润丰厚。
1.6 二噁英的环境影响
以上述电厂为例,将烟气量(6 110 000 Nm³/h)折算为对应的每 t 干污泥焚烧稀释后的烟气量为1 333 000 万 Nm³/tDS,与竹园污泥干化焚烧竣工验收实测数据(6 次实测值 7 846 Nm³/tDS~ 8 550 Nm³/tDS、平均值为8 302 Nm³/tDS)相比,烟气量稀释倍数高达156~170倍(平均160倍)。根据该电厂环评文件,全年掺烧含水率60%的污泥10万t 排放二噁英1.32 kg-TEQ/a,折合每吨干污泥的排放量为 33 mg-TEQ/tDS,为竹园干化焚烧实测值(6 次实测 0.232~0.369 mg-TEQ /tDS、平均值为0.285 mg-TEQ /tDS)的 89~142 倍(平均 115倍)。究其原因:独立焚烧烟气净化系统配有特殊的二噁英减排设施(减排效率 98%),而电厂燃煤锅炉烟气净化系统则没有配有特殊的二噁英减排设施。
由于电厂烟囱更高(约200 m左右),其影响范围将更大,受其影响的人口也就更多。尽管电厂烟囱大气稀释扩散条件远好于独立的干化焚烧(烟囱高度多为50 m~60 m),但由于“源强”的增加,其最大落地浓度仍高于独立干化焚烧的5~9倍,其对环境的影响程度更大。
由于二噁英正常情况下极难分解,在人体内的半衰期达5年-10年(平均为7年)之 久,尤其是在人口密集的大中城市,其对人的健康影响将会是长期的、隐性的,不容忽视。
40-50 年前,中国的癌症发病率极低,根据国家癌症中心 2019 年 1 月发布的最新一期全国癌症统计数据,中国恶性肿瘤死亡占居民全部死因的 23.91%,且发病率每年保持约 3.9%的增幅,死亡率每年保持 2.5%的增幅,新发病例和死亡病例分别占全球的 23.7%和 30.2%;全球每新增 100个癌症患者中我国占21个,我国每天超过10 000人确诊癌症、平均每分钟就有7.5人。按目前电厂掺烧污泥“遍地开花”且有增无减的乱象现状,今后中国癌症的发病率与死亡率将会更高。当然,焚烧排放二噁英并非引发癌症的唯一因素,但是重要因素之一。
1.7 汞的环境影响
我国原煤中汞含量通常在0.01 mg/kg~5 mg/kg、平 均 为 0.2 mg/kg,而 污 水 厂 污 泥 含 汞 则 在4.63 mg/kg~138 mg/kg含有工业废水的城市污水、工业园区污水远高于单一生活污水污泥),远高于原煤中的汞含量。由于汞不溶于水、具有极强的穿透能力,一般认为电厂燃煤烟气净化系统对烟气中的汞仅为10%左右的减排效果。
以上述电厂1 000 MW超超临界机组为例,按其环评文件,掺烧5%含水率60%的污泥后全年增加汞排放22 kg(减排率约50%),折合单位干污泥的排放量为 0.55 mg/tDS,与独立焚烧工艺(排放5.6 ng/tDS、减排效率87%)相比,增大了97倍。究其原因:独立焚烧烟气净化系统配有适合汞减排的措施,而电厂燃煤锅炉烟气净化系统没有相应的汞减排的措施。
同上,因为电厂烟囱更高,汞的影响范围更大,受影响的人口也更多;尽管电厂烟囱排放稀释扩散条件更好,但因为源强增加太多其最大落地浓度仍将高于独立干化焚烧的 4 倍~8 倍,对环境的影响程度更大。
2建议
对于电厂燃煤锅炉的掺烧,也仅作为短期过渡性的“临时应急措施”,且对特征污染物的排放不能也不应该直接“套用”《生活垃圾焚烧控制标准》,应通过“换算”、与独立焚烧工艺相比不应增加二噁英及汞等特征污染物的排放量,并应对“换算标准”的合理性进行充分论证,同时还应考虑这类粉煤灰建材的安全利用问题。
为确保电厂燃煤锅炉安全运行,对作为电厂焚烧的污泥应有一定的要求,如对含水率的要求、对污泥脱水调理剂选择的要求等。
由于目前尚无适用于电厂锅炉掺烧污泥的排放标准、设计规范、污染防治技术政策等,政府部门应组织专业技术力量对此进行比较深入的综合性研究,在此基础上提出相应的政策性要求及环境管理要求等。
3结语
鉴于电厂燃煤锅炉烟气量巨大,专门配备二噁英及汞等污泥焚烧特征污染物的减排措施几无可能,巨大的“稀释排放”不可避免。国家和地方各级政府部门均不应鼓励电厂燃煤锅炉掺烧,应鼓励污泥直接焚烧处置工艺。
文章来源网络